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Abstract. A theory of spin-transport in hybrid normal metal-ferromagnetic electronic circuits is developed,
taking into account non-collinear spin-accumulation. Spin-transport through resistive elements is described
by 4 conductance parameters. Microscopic expression for these conductances are derived in terms of scat-
tering matrices and explicitly calculated for simple models. The circuit theory is applied to 2-terminal and
3-terminal devices attached to ferromagnetic reservoirs.

PACS. 72.10.Bg General formulation of transport theory – 72.10.-d Theory of electronic transport; scat-
tering mechanisms – 75.70.-i Magnetic properties of thin films, surfaces, and interfaces – 75.70.Pa Giant
magnetoresistance

1 Introduction

Spin-injection from a ferromagnetic metal into a non-
magnetic metal was first realized by Tedrow and Meservey
in the seventies [1]. The discovery of the giant magneto-
resistance (GMR) in metallic magnetic multilayers has led
to an explosion of interest into spin-transport in hybrid
normal metal-ferromagnetic metal systems in the nineties
(for reviews see Ref. [2]). Although discovered only ten
years ago, the GMR is commercially utilized in high-end
magnetic recording media. Spin-transport between ferro-
magnets through tunnel junctions has also attracted re-
newed interest (for a review see Ref. [3]). Recently a mag-
netic double barrier tunnel device was fabricated which
enables the study of the interplay between spin-polarized
tunneling and Coulomb charging effects [4–6].

Magneto-electronic principles have until now led to
magnetic-field sensor devices. Future applications might
include non-volatile memory cells or even transistors, the
latter being a three-terminal device. Johnson realized that
novel long-range effects in transport between ferromagnets
and normal metals can occur in multi-terminal systems
[7]. In Johnson’s spin-transistor different ferromagnetic
(Ohmic) contacts provide information about the amount
of spin-accumulation in a normal metal film over distances
much larger than the mean-free path. A transistor-like ef-
fect was observed on switching the configuration of the
magnetizations of the ferromagnetic contacts from paral-
lel to anti-parallel.
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Spin-transport in systems comprising ferromagnets
with non-collinear magnetization directions has attracted
less attention. Moodera et al. measured the dependence
of the current through magnetic tunnel junctions on the
relative angle between the magnetization directions of
the electrodes [8]. The results were in agreement with the
theoretical predictions based on the spin-torque model in-
troduced by Slonczewski [9]. Non-collinear spin transport
has been addressed by a number of theoretical papers [10].

The above examples do not exhaust the novel phe-
nomena that can be anticipated for multi-terminal hybrid
normal metal-ferromagnet circuits and devices. The ques-
tion of the most appropriate theoretical approach to the
field arises. If the possibilities of macroscopic quantum
coherence and its application to quantum computing are
contemplated, a fully quantum mechanical treatment of
the many-body system is required, of course. However,
for contact with the experiments mentioned above and
probably also with most to be realized in the near future
a full quantum mechanical treatment is unnecessary and
unrealistic. When at least a part of the device is diffu-
sive simplified approaches are called for. The situation
is similar to that in the field of inhomogeneous super-
conductors which has recently been reviewed by Belzig
et al. [11]. The theoretical framework of choice for trans-
port in superconducting and/or magnetic “dirty” systems
is the non-equilibrium Keldysh Green functions formalism
in the quasiclassical approximation. However, it is techni-
cally difficult and physically not very transparent for all
but the devoted specialist. This led one of us to simplify
equations for complicated hybrid superconductor-normal
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Fig. 1. A many-terminal circuit consisting of normal metals
(N) and ferromagnets (F) with arbitrary magnetization direc-
tions. The normal metals (ferromagnets) are coupled to adja-
cent nodes by contacts which determine the resistance of the
system.

metal systems to a handful of easily accessible rules, the
circuit theory of Andreev reflection [12]. We recently in-
troduced a circuit (or finite-element) theory of spin and
charge transport in hybrid ferromagnet-normal metal sys-
tems which provides parametric dependencies of the elec-
tron transport properties as well as microscopic expres-
sions for the parameters and illustrated its appeal [15].
Figure 1 shows an example of a typical many-terminal
configuration of present interest. The main physical pa-
rameters of such a circuit are the magnetization directions,
the chemical potentials of the leads, and the contact con-
ductances between the normal and ferromagnetic metals.
In this paper we introduce the spin-polarized kinetic equa-
tions based on the Keldysh Green function technique in
the quasi-classical approximation. When solved with judi-
ciously chosen boundary conditions the basic equations of
the circuit theory emerge.

Before turning to the technical details let us first dis-
cuss the conditions under which long-range spin effects are
observable in normal metals. Spins injected into a nor-
mal metal node relax due to unavoidable spin-flip pro-
cesses. Naturally the dwell time on the node must be
shorter than the spin-flip relaxation time in order to ob-
serve non-locality in the electron transport. For a simple
ferromagnet (F) normal metal (N) double heterostructure
(F-N-F) with anti parallel magnetizations the condition
can be quantified following [5]. The spin-current into the
normal metal node is roughly proportional to the parti-
cle current, e(ds/dt)tr ∼ I = V/R, where s is the num-
ber of excess spins on the normal metal node, V is the
voltage difference between the two reservoirs coupled to
the normal metal node, and R is the F-N contact resis-
tance. When the node is smaller than the spin-diffusion
length, the spin-relaxation rate is e(ds/dt)rel = −s/τsf ,
where τsf denotes the spin-relaxation time on the node.
(Otherwise this simple approach breaks down since the
spatial dependence of the spin-distribution in the nor-
mal metal should be taken into account [13]). The num-
ber of spins on the normal metal node is equivalent to
a non-equilibrium chemical potential difference ∆µ = sδ
in terms of the energy level spacing δ (the inverse den-
sity of states) (more generally the relation between ∆µ
and s is determined by the spin-susceptibility [5,14]). The
spin-accumulation on the normal metal node significantly

affects the transport properties when the non-equilibrium
chemical potential difference is of the same order of mag-
nitude or larger than the applied source-drain voltage,
∆µ > eV or δτsf/h > R/RK , where RK = e2/h is
the quantum resistance. We see that spin-accumulation
is only relevant for sufficiently small normal metal nodes
and/or sufficiently long spin-accumulation times and/or
good contact conductances. The implications of this rela-
tion have been discussed in [5] for different materials.

In the present article we explain in more detail the
foundations of the circuit theory of spin-transport [15]
and present more applications; a general result for two-
terminal devices and results for the spin-resistance in
three-terminal devices similar to the set-up of Johnson [7].
The manuscript is organized in the following way. In Sec-
tion 2 we describe the basic entities in a circuit theory, the
nodes, the contacts and the reservoirs. The contact con-
ductances are computed in Section 3 for a diffusive, a bal-
listic and a tunnel contact. The circuit theory is employed
in Section 4 to find the current trough two-terminal sys-
tems and the ‘spin-resistance’ of a three terminal device.
Our conclusions can be found in Section 5. Appendix A
gives the detailed derivation of the transformation from a
non-collinear to a collinear two-terminal system.

2 Circuit theory

A typical (magneto)electronic circuit as schematically
shown in Figure 1 can be divided into contacts (resis-
tive elements), nodes (low impedance interconnectors) and
reservoirs (voltage sources). The present theory is appli-
cable when the contacts limit the electric current and the
nodes are characterized by a distribution function which
is constant in position and isotropic in momentum space.
The latter condition justifies a diffusion approximation
and requires that the nodes are either irregular in shape
or contain a sufficient number of randomly distributed
scatterers. State-of-the art magneto-electronic devices are
rather dirty, so this does not appear to be a major re-
striction for the applicability of the theory. Because the
spin-accumulation is not necessarily parallel to the spin-
quantization axis, the electron distribution at each node
is described by a 2 × 2 matrix in spin-space. The cur-
rent through each contact can be calculated as a function
of the distribution matrices on the adjacent nodes. The
spin-current conservation law then allows computation of
the circuit properties as a function of the applied voltages.
The recipe for calculating the current-voltage characteris-
tics can be summarized as:
– Divide the circuit into nodes, contacts, and reservoirs.
– Specify the 2× 2 distribution matrix in spin-space for

each node and reservoir.
– Compute the current through a contact and the dis-

tribution matrices in the adjacent nodes, which are
related by the spin-charge conductances specified be-
low.

– Make use of the spin-current conservation law at each
node, stating that the difference between in and out-
going spin-currents equals the spin-relaxation rate.
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Fig. 2. A contact between a ferromagnetic node and a normal
metal node. The current is evaluated at the normal metal side
(dotted line). The transmission coefficient from the ferromag-
net to the normal metal is t′ and the reflection matrix from
the normal metal to the normal metal is r.

– Solve the resulting system of linear equations to ob-
tain all currents as a function of the reservoir chemical
potentials.

2.1 Node

We denote the 2× 2 distribution matrix at a given energy
ε in the node by f̂(ε), where hat ‘ˆ’ denotes a 2×2 matrix
in spin-space. The external reservoirs are assumed to be in
local equilibrium so that the distribution matrix is diag-
onal in spin-space and attains its local equilibrium value
f̂ = 1̂f(ε, µα), 1̂ is the unit matrix, f(ε, µα) is the Fermi-
Dirac distribution function and µα is the local chemical
potential in reservoir α. The direction of the magnetiza-
tion of the ferromagnetic nodes is denoted by the unit
vector mα.

The 2× 2 non-equilibrium distribution matrices in the
nodes in the stationary state are uniquely determined by
current conservation

∑
α

Îαβ =

(
∂f̂β
∂t

)
rel

, (1)

where Îαβ denotes the 2 × 2 current in spin-space from
node (or reservoir) α to node (or reservoir) β and the
term on the right hand side describes spin-relaxation in
the normal node. The right hand side of equation (1) can
be set to zero when the spin-current in the node is con-
served, i.e. when an electron spends much less time on
the node than the spin-flip relaxation time τsf . If the size
of the node in the transport direction is smaller than the
spin-flip diffusion length lsf =

√
Dτsf , where D is the diffu-

sion coefficient then the spin-relaxation in the node can be
introduced as (∂f̂N/∂t)rel = (1̂Tr(f̂N)/2− f̂N)/τsf . If the
size of the node in the transport direction is larger than
lsf the simplest circuit theory fails and we have to use a
more complicated description with a spatially dependent
spin-distribution function [13].

2.2 Current through a contact

A schematic picture of a contact between a normal metal
and a ferromagnetic node is shown in Figure 2. The cur-

rent is evaluated on the normal side of the contact (dotted
line). The current through the contact is

Î =
e

h

{∑
nm

[t̂′nmf̂F
(
t̂′mn

)† − (Mf̂N − r̂nmf̂N (r̂mn)†)]
}
,

(2)

where rnmss′ is the reflection coefficient for electrons from
transverse mode m with spin s′ incoming from the nor-
mal metal side reflected to transverse mode n with spin
s on the normal metal side, and t′nmss′ is the transmission
coefficient for electrons from transverse mode m with spin
s′ incoming from the ferromagnet transmitted to trans-
verse mode n with spin s on the normal metal side. (Note
that the Hermitian conjugate in (2) operates in the spin-
space and the space spanned by the transverse modes, e.g.
(r̂mn)†ss′ = (r̂nms′s )∗.) The relation (2) can be found intu-
itively in the spirit of the Landauer-Büttiker formalism
[16], but can also be derived more rigorously by using the
Keldysh formalism for non-equilibrium transport. We use
below the latter approach and clarify the order of the spin-
indices. Implicitly included in (2) are also effects related
to the precession of spins non-collinear to the magnetiza-
tion direction in ferromagnets which will be made more
explicit below.

The relation (2) between the current and the distri-
butions has a simple form after transforming the spin-
quantization axis. The detailed calculation of this trans-
formation is shown in Appendix A. Disregarding spin-flip
processes in the contacts, the reflection matrix for an in-
coming electron from the normal metal transforms as

r̂nm =
∑
s

ûsrnms ,

where rnm↑ (s =↑) and rnm↓ (s =↓) are the spin-
dependent reflection coefficients in the basis where the
spin-quantization axis is parallel to the magnetization in
the ferromagnet, the spin-projection matrices are

û↑ = (1̂ + σ̂ ·m)/2 , (3)

û↓ = (1̂− σ̂ ·m)/2 (4)

and σ̂ is a vector of Pauli matrices. Similarly for the trans-
mission matrix

t̂′nm(t̂′mn)† =
∑
s

ûs|t′nms |2 ,

where tnm↑ and tnm↓ are the spin-dependent transmission
coefficients in the basis where the spin-quantization axis
is parallel to the magnetization in the ferromagnet. Using
the unitarity of the scattering matrix, we find that the
general form of the relation (2) reads

eÎ = G↑û↑
(
f̂F − f̂N

)
û↑ +G↓û↓

(
f̂F − f̂N

)
û↓

−G↑↓û↑f̂Nû↓ − (G↑↓)∗û↓f̂Nû↑ , (5)

where we have introduced the spin-dependent conduc-
tances G↑ and G↓

G↑ =
e2

h

[
M −

∑
nm

|rnm↑ |2
]

=
e2

h

∑
nm

|tnm↑ |2 , (6)
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G↓ =
e2

h

[
M −

∑
nm

|rnm↓ |2
]

=
e2

h

∑
nm

|tnm↓ |2 (7)

and the mixing conductance

G↑↓ =
e2

h

[
M −

∑
nm

rnm↑ (rnm↓ )∗
]
. (8)

The precession of spins leads to an effective relaxation of
spins non-collinear to the local magnetization in ferromag-
nets and consequently the distribution function is limited
to the form f̂F = 1̂fF

0 + σ̂ ·mfF
s . Such a restriction does

not appear in the normal metal node and f̂N can be any
Hermitian 2× 2 matrix.

We thus see how the relation between the current
through a contact and the distributions in the ferromag-
netic node and the normal metal node are determined by
4 parameters, the two real spin-dependent conductances
(G↑, G↓) and the real and imaginary parts of the mix-
ing conductance G↑↓. These contact-specific parameters
can be obtained by microscopic theory or from experi-
ments. The spin-conductances G↑ and G↓ have been used
in descriptions of spin-transport for a long time [2]. The
mixing conductance is a new concept which is relevant for
transport between non-collinear ferromagnets. Note that
although the mixing conductance is a complex number the
2× 2 current in spin-space is Hermitian and consequently
the current and the spin-current in any direction given
by equation (5) are real numbers. From the definitions of
the spin-dependent conductances (6), (7) and the ‘mixing’
conductance (8) we find

2ReG↑↓ = G↑ +G↓ +
e2

h

∑
nm

|rnm↑ − rnm↓ |2

and consequently the conductances should satisfy

2ReG↑↓ ≥ G↑ +G↓ . (9)

A physical interpretation of this result is given below.
Before outlining the derivation of (2) leading to (5), let

us discuss the physics in simple terms. Some insight can
be gained by re-writing the current and the distribution
function in terms of a scalar particle and a vector spin-
contribution, Î = (1̂I0 + σ̂ · Is)/2, f̂N = 1̂fN

0 + σ̂ · sfN
s

and f̂F = 1̂fF
0 + σ̂ ·mfF

s . The particle current can then
be written as

I0 = (G↑ +G↓)(fF
0 − fN

0 ) + (G↑ −G↓)(fF
s −m · sfN

s ).
(10)

The familiar expressions for collinear transport are recov-
ered when m · s = ±1. The spin-current is

Is = m[(G↑ −G↓)(fF
0 − fN

0 )

+(G↑ +G↓)fF
s + (2ReG↑↓ −G↑ −G↓)s ·mfN

s ]

−s2ReG↑↓fN
s + (s×m)2ImG↑↓fN

s . (11)

The first three terms point in the direction of the magne-
tization of the ferromagnet m, the fourth term is in the

direction of the non-equilibrium spin-distribution s, and
the last term is perpendicular to both s and m. The last
contribution solely depends on the imaginary part of the
mixing conductance. We can interpret this term by con-
sidering how the direction of the spin on the normal metal
node s would change in time keeping, all other parame-
ters constant. The cross product creates a precession of s
around the magnetization direction m of the ferromagnet
similar to a classical torque while keeping the magnitude of
the spin-accumulation constant. In contrast, the first four
terms represent diffusion-like processes which decrease the
magnitude of the spin-accumulation. We now understand
condition (9) since (11) implies that the non-equilibrium
spin-distribution fN

s propagates easier into a configuration
parallel to s than parallel to m, since these processes are
governed by positive diffusion-like constants 2ReG↑↓ and
2ReG↑↓ −G↑ −G↓, respectively.

2.3 Derivation of the current

In this section the relation between the current through
a contact and the adjacent distribution functions (2) is
derived. This derivation is not crucial for the understand-
ing of Sections 3–5 and can be skipped by readers mainly
interested in the physical implications of (2) and (5). We
follow the lines of the derivation of the contact current
between a normal metal and a superconductor in refer-
ence [12]. We consider a F-N system comprising of a fer-
romagnet with arbitrary magnetization direction and a
normal metal node separated by a contact, as shown in
Figure 2. The Stoner Hamiltonian is

Ĥ =
[
− 1

2m
∇2 + V p(r)

]
1̂ + V̂ s(r), (12)

where V p(r) is the spin-independent potential and V̂ s(r)
is the spin-dependent potential. The latter vanishes in the
normal metal node and has an arbitrary, but spatially
independent direction in spin-space in the ferromagnetic
reservoir, V̂ s(r) = (σ ·m)V s(r). Non-equilibrium trans-
port properties are most conveniently discussed in the
framework of the Keldysh formalism. The Keldysh Green
function is given by the (4 × 4) matrix

Ǧ =

(
ĜR ĜK

0̂ ĜA

)
,

where ĜR, ĜK and ĜA are the retarded, Keldysh and
advanced Green functions respectively, which are (2 × 2)
matrices in spin-space and 0̂ is the (2 × 2) zero matrix.
The retarded Green function in spin-space is

ĜR(1, 1′) =

(
GR↑↑(1, 1

′) GR↑↓(1, 1
′)

GR↓↑(1, 1
′) GR↓↓(1, 1

′)

)

and there are analogous expressions for ĜK and ĜA. Here
1 denotes the spatial and the time coordinates, 1 = r1t1.
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The symbol “check” (̌ ) denotes (4×4) matrices in Keldysh
space and the symbol “hat” (̂ ) denotes (2×2) matrices in
spin-space. The spin-components of the Green functions
are

GRσs(1, 1
′) = −iθ(t1 − t1′)

〈[
ψσ(1), ψ†s(1

′)
]〉

+
, (13)

GAσs(1, 1
′) = iθ(t1′ − t1)

〈[
ψσ(1), ψ†s(1

′)
]〉

+
, (14)

GKσs(1, 1
′) = −i

〈[
ψσ(1), ψ†s(1

′)
]〉
, (15)

where ψ†s(1) is the electron field operator for an electron
with spin s in the z-direction. The Keldysh Green func-
tions is determined by the equation(

Ĥ − i~
∂

∂t

)
Ǧ(rt, r′t′) = 1̌δ(rt− r′t′),

and the boundary conditions to be discussed below (1̌ is a
4× 4 unit matrix). In the stationary situation Ǧ(1, 1′) =∫

d(E/2π) exp(iE (t1 − t1′))ǦE(r, r′) and the Green func-
tion on a given energy shell is determined from(

Ĥ −E
)
ǦE(r, r′) = 1̌δ(r− r′) .

We will in the following omit the index E in denoting
the Green function at a given energy. The Keldysh Green
function can be decomposed into quasi-one-dimensional
modes as

Ǧss′(r, r′) =
∑
nm,αβ

G̃αβnsms′(x, x
′)

× χns (ρ;x)χm∗s′ (ρ′;x′)eiαkns x−iβkm
s′x
′
, (16)

where χns (ρ;x) is the transverse wave function and kns de-
notes the longitudinal wave-vector for an electron in trans-
verse mode m with spin s. The indices α and β denote
right-going (+) and left-going (−) modes. The symbol
‘tilde’ (̃ ) denotes matrices in Keldysh space, spin-space,
ant the space spanned by the transverse modes and the
directions of propagation.

The current operator can be found from the continuity
relation for the electron density. The spin-density matrix
is

ρσs(1) =
〈
ψ†s(1)ψσ(1)

〉
.

The time-evolution of the spin-density matrix reads

∂

∂t1
ρσs = − ∂

∂r1
Jp
σs +

(
∂ρσs
∂t1

)
prec.

,

where we have inserted the Hamiltonian (12) and found
the spin-current

Jp
σs =

~i
2m

〈
∂ψ†s
∂r1

ψσ − ψ†s
∂ψσ
∂r1

〉
,

and the spin-precession(
∂ρσs
∂t1

)
prec.

=
1
i~
∑
α

[V s
σαραs − ρσαV s

αs] . (17)

In three dimensions the spin-precession is an average over
many states with different Larmor frequencies which av-
erage out very quickly in a ferromagnet, leading to an
efficient relaxation of the non-diagonal terms in the spin-
density matrix that represent a spin-accumulation non-
collinear to the magnetization in the ferromagnet. This
spin-relaxation mechanism does not exist in normal metals
where in the absence of spin-flip scattering the spin-wave
functions remain coherent.

In the stationary situation the spin-current is

Jσs =
(

∂

∂r1
− ∂

∂r1′

)
~i

2m

∫
dE
2π

∫
d(t1 − t1′)

× exp(iE(t1 − t1′))
〈
ψ†s(1)ψσ(1′)

〉
|r1′=r1 . (18)

We now define the extended 4 × 4 current matrix in
Keldysh and spin-space as

Ǐ(x) =
∫

dρ
e~
m

(
∂

∂x
− ∂

∂x′

)
Ǧ(r, r′)|r′=r.

The transverse wave function χns (ρ;x) is spatially inde-
pendent in the leads and we find

Ǐss′(x) = ie
∑
nαβ

(αvns − βvms′ ) G̃αβnsms′(x, x)

×
∫

dρχns (ρ;x)χm∗s′ (ρ;x) , (19)

where vns = ~kns /m is the longitudinal velocity for an elec-
tron in transverse mode n with spin s. In a normal metal,
the transverse states and the longitudinal momentum are
spin-independent and the Keldysh current simplifies to

Ǐss′(x) = 2ie
∑
nα

αvnG̃ααnsns′(x, x) , (20)

which we will use to calculate the spin-current on the nor-
mal side of the contact. We use the representation

iG̃αβnsms′(x, x
′) =

g̃αβnsms′(x, x
′)√

vns v
m
s′

+ 1̌δss′
αδα,βsign(x− x′)

vns
,

(21)

where the latter term does not contribute to the current
on the normal side, and we have on the normal metal side

Ǐss′(x) = 2e
∑
nα

αg̃ααnsns′(x, x) . (22)

We now introduce the transfer matrix M between
waves propagating to the right (left) on the right hand
side of the contact Ψ+

R (Ψ−R ) and waves propagating to the
right (left) on the left hand side of the contact Ψ+

L (Ψ−L )(
Ψ+
R

Ψ−R

)
= M

(
Ψ+
L

Ψ−L

)
.
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The elements of the transfer matrix are related to the
reflection and transmission coefficients by(

m++ m+−

m−+ m−−

)
=

(
t− r′(t′)−1r r′(t′)−1

−(t′)−1r (t′)−1

)
,

Similarly we can introduce the scattering matrix

S =

(
r t′

t r′

)
so that

S =

(
−(m−−)−1m−+ (m−−)−1

m++ −m+−(m−−)−1m−+ m+−(m−−)−1

)
,

where rsσnm is the reflection matrix for incoming states from
the left in mode m and spin σ to mode n with spin s,
tsσnm is the transmission matrix for incoming states from
the left transmitted to outgoing states to the right, r′ is
the reflection matrix for incoming states from the right
reflected to the right, and t′ is the transmission matrix
for incoming states from the right transmitted to the left.
Unitarity of the S-matrix requires S†S = 1 and SS† =
and implies that the transfer matrix satisfies

M̄†Σ̄zM̄ = Σ̄z , (23)

M̄Σ̄zM̄
† = Σ̄z . (24)

where
(
Σ̄z
)αβ
nsms′

= αδα,βδns,ms′ is a Pauli matrix with
respect to the direction of propagation. In order to con-
nect the Green function to the left and to the right of
the contact, we use the transfer matrix of the contact
g̃σσ

′

nsms′(x = x2, x
′) =

∑
ls′′,σ′′M

σσ′′

nsls′′ g̃
σ′′σ′

ls′′ms′(x = x1, x
′)

and similarly for the x′-coordinate. Hence

g̃2 = Mg̃1M
† , (25)

where g̃2(1) = g̃(x = x2(1), x
′ = x2(1)). Up to this point

the Keldysh Green functions have been obtained exactly
for the Hamiltonian (12). Now we should include the
proper boundary conditions to uniquely define the Green
functions. To this end we introduce the assumptions of
isotropizations at the nodes. The incoming modes are as-
sumed to take their quasi-classical values described by
the quasi-classical Green functions Ḡ, whereas the out-
going modes are determined by the properties of the
contact [12]: (

Σ̄z + Ḡ1

) (
Σ̄z − ḡ1

)
= 0 (26)(

Σ̄z + g̃1

) (
Σ̄z − Ḡ1

)
= 0 (27)(

Σ̄z − Ḡ2

) (
Σ̄z + g̃2

)
= 0 (28)(

Σ̄z − g̃2

) (
Σ̄z + Ḡ2

)
= 0 , (29)

where Ḡ1 (Ḡ2) is the isotropic Green function in reservoir
1 (2): (

Ḡ1

)αβ
nsms′

= δn,mδ
αβ(Ǧ1)ss′ .

In a normal metal, the homogeneous retarded quasi-
classical Green function is

ḠR =

(
G++
R G+−

R

G−+
R G−−R

)
=

(
1 0
0 1

)
.

and the advanced quasi-classical Green function is ḠA =
−ḠR. (Note that here 1 means a unit matrix in the ba-
sis of the transverse modes and spin, 1 → δns,ms′ 1̂.) The
Keldysh component of the Green function is

ḠK,1(2) = ĥ1(2)

(
1 0
0 1

)
,

where the 2×2 distribution matrix ĥ is related to the (non-
equilibrium) distribution functions f̂(ε)1(2) in the nodes
by

ĥ1(2) = 2(2f̂(ε)1(2) − 1) .

The isotropization conditions (26, 27, 28) and (29) re-
late the retarded and advanced Green function on the left
and right hand side of the contact:

g̃R,1 =

(
1 0
g̃−+
R,1 1

)

g̃R,2 =

(
1 g̃+−

R,2

0 1

)
where g̃−+

R,1 and g̃+−
R,2 are determined by the Green function

on the right and the scattering properties of the contact.
The advanced Green function is related to the retarded
Green function by

g̃A = −g̃†R .
The Keldysh component on the left side is determined by
(26, 27, 28, 29) and (30) and is dictated by the boundary
conditions given by the isotropization process to be

g̃K,1 =

(
ĥ11 ĥ1r

†

rĥ1 g̃
−−
K,1

)
, (30)

g̃K,2 =

(
g̃++
K,2 r′ĥ2

ĥ2r
′† ĥ21

)
. (31)

We now use the relation between the Green function on
the left hand side and the right hand side of the contact
(25) to obtain the retarded Green functions

g̃−+
R,1 = 2r

g̃+−
R,2 = 2r′ ,

and the Keldysh Green function

g̃−−K,1 = t′ĥ2t
′† + ĥ1r

† (32)

g̃++
K,2 = tĥ1t

† + r′ĥ2r
′† . (33)

Inserting the expression the Keldysh component (33) into
(22) and using (2.3) we finally find the expression for the
current through the contact (2).
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Fig. 3. A diffusive contact between a ferromagnetic node and
a normal metal node. The length of the ferromagnetic (normal
metal) part of the contact is LF (LN), and the conductivity of
the ferromagnetic (normal metal) is σF (σN). The cross-section
of the contact is A.

3 Contact conductances

The four conductance parameters G↑, G↓, ReG↑↓ and
ImG↑↓ depend on the microscopic details as illustrated
below for 3 elementary model contacts: a diffusive, a bal-
listic, and a tunnel contact.

3.1 Diffusive contact

We consider first a diffusive contact between a normal
metal node and a ferromagnetic node and show the rela-
tions between the conductances (see Fig. 3). The cross-
section of the contact is A, the length of the normal metal
part of the contact is LN , the length of the ferromagnetic
part of the contact is LF , the conductivity on the normal
side σN and the spin-dependent conductivities on the fer-
romagnetic side σFs. The conductance of the normal part
is GND = AσN/LN and the spin-dependent conductances
of the ferromagnetic part are GFsD = AσFs/LF . The spin-
dependent conductances of the whole contact are obtained
simply as the diffusive ferromagnetic and normal metal re-
gions in series:

G↑D =
GF↑D GND

GF↑D +GND
, (34)

G↓D =
GF↓D GND

GF↓D +GND
· (35)

These spin-dependent conductances (G↑D and G↓D) fully
describe collinear transport (in the absence of spin-flip
scattering). For non-collinear magnetizations the mixing
conductance is also needed. It can be derived from the
scattering matrix, e.g. with the method developed in ref-
erence [17]. Here we use a much simpler approach based
on the diffusion equation, describing the scattering prop-
erties of the contact by a spatially dependent distribution
matrix. The current density on the normal side of the con-
tact (x < 0) is ı̂(x < 0) = σN∂xf̂ and consequently the
total current is

Î(x < 0) = GND(LN∂x)f̂ ,

where f̂ is the spatially dependent distribution matrix on
the normal side in the contact. In the normal metal node
the boundary condition is

f̂(x = −LN) = f̂N . (36)

In a ferromagnet spin-up and spin-down states are inco-
herent, and hence spins non-collinear to the magnetization
direction relax according to (17) and only spins collinear
with the magnetization will propagate sufficiently far away
from the NF-interface. We assume that the ferromagnet is
sufficiently strong and that the contact is longer than the
ferromagnetic decoherence length ξ =

√
D/hex, where D

is the diffusion constant and hex is the exchange splitting.
The decoherence length is typically very short in ferromag-
nets, ξ = 2 nm in Ni wires [18]. The distribution function
on the ferromagnetic side can then be represented by a
2-component distribution function

f̂(x > 0) = û↑f↑ + û↓f↓ ,

where û↑ and û↓ are the spin-projection matrices (3)
and (4).

We allow for a spin-accumulation collinear to the mag-
netization direction in the ferromagnet. The boundary
condition determined by the distribution function in the
ferromagnetic node is thus

f↑(x = LF ) = fF↑ , (37)

f↓(x = LF ) = fF↓ . (38)

The total current in the ferromagnet is

Î(x > 0) = GF↑D û↑∂xf
↑ +GF↓D û↓∂xf

↓ .

We assume that the resistance of the diffusive region of
the contacts is much larger than the contact resistance be-
tween the normal and the ferromagnetic metal. The dis-
tribution function is in this limit continuous across the
normal metal-ferromagnetic interface,

f̂(0+) = f̂(0−) . (39)

Current conservation on the left (x < 0) and on the right
(x > 0) of the normal metal-ferromagnet interface dictates

∂xÎ = 0 . (40)

Note that the component of the spin-current that is non-
collinear to the magnetization direction in the ferromag-
net is not conserved on going through the interface due
to strong relaxation induced by (17). The first order
differential equation (40) and the boundary conditions
(36–38) and (39) uniquely determine the distribution func-
tions and hence the conductance in the diffusive contact.
The current on the normal side of the contact becomes

eÎ = G↑Dû
↑(f̂F − f̂N)û↓ +G↓Dû

↓(f̂F − f̂N)û↓

+ GND

[
û↑(f̂F − f̂N)û↓ + û↑(f̂F − f̂N)û↓

]
. (41)

The current in a diffusive contact thus takes the generic
form (5) with G↑ = G↑D, G↓ = G↓D and G↑↓ = GND . The
mixing conductance is thus real and only depends on the
normal conductance. The latter results can be understood
as a consequence of the effective spin-relaxation of spins
non-collinear to the local magnetization direction. Those
spins cannot propagate in the ferromagnet, and conse-
quently the effective conductance can only depend on the
conductance in the normal metal as (41) explicitly demon-
strates.
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3.2 Ballistic contact

A simplified expression for the conductances can be found
for a ballistic contact. Firstly, the reflection and transmis-
sion coefficients appearing in (6, 7) and (8) are diagonal
in the space of the transverse channels since the trans-
verse momentum is conserved. In a simplified model [19]
the transmission channels are either closed t = 0 or open
t = 1. The conductances (6, 7) and (8) can then be found
by simply counting the number of propagating modes. We
obtain the spin-dependent conductances

G↑B =
e2

h
N↑ (42)

G↓B =
e2

h
N↓ , (43)

where N↑ is the number of spin-up propagating channels
and N↓ is the number of spin-down propagating channels.
The mixing conductance is determined by

G↑↓B = max(G↑B , G
↓
B)

and is real. In a quantum mechanical calculation the chan-
nels just above the potential step are only partially trans-
mitting and the channels below a potential step can have a
finite transmission probability due to tunneling. Further-
more, the band structure of ferromagnetic metals is usu-
ally complicated and interband scattering exists even at
ideal interfaces. We may therefore expect that in general
the phase of the scattered wave will be relevant giving a
non-vanishing imaginary part of the mixing conductance.
First-principles calculations of the complete conductance
matrix are therefore highly desirable.

3.3 Tunnel contact

For a tunneling contact the transmission coefficients are
exponentially small and the reflection coefficients have a
magnitude close to one. The spin-dependent conductances
are

GsT =
e2

h

∑
nm

|tnms |2 . (44)

For simple models of tunnel barriers rnms = δnm exp iφn−
δrnms , where the phase-shift φn is spin-independent. We
expand (8) in terms of the small correction δrnms and find
that

ReG↑↓T = (G↑T +G↓T )/2 ,

where G↑T and G↓T are the spin-dependent tunneling con-
ductances (44). Since the transmission coefficients in a
tunnel contact are all exponentially small, the imaginary
part of GT↑↓ is of the same order of magnitude as GT↑ and
GT↓ but it is not universal and depends on the details of
the contact.

4 Illustrations of the theory

We will in this chapter illustrate the appeal of the circuit
theory of spin-transport by computing the transport prop-
erties of two-terminal devices and a three terminal device.
It is assumed that the normal metal node in these devices
is smaller than the spin-diffusion length so that the spatial
distribution function is homogeneous within the node.

4.1 Two terminals

First we consider a normal metal node attached to two
ferromagnetic reservoirs with identical contacts, e.g. G↑1 =
G↑2 = G↑, G↓1 = G↓2 = G↓ and G↑↓1 = G↑↓2 = G↑↓ as shown
in Figure 4. The relative angle between the magnetization
in the two ferromagnetic reservoirs is θ. With the aid of
(1) and (5) we find the current

I(θ) =
G

2
V

(
1− P 2

1 + gsf

tan2 θ/2
tan2 θ/2 + α

)
, (45)

where

α =
|η|2 + gsf(3ηR + 2gsf)

(ηR + 2gsf)(1 + gsf)
· (46)

Here, we have introduced the total conductance of one
contact G = G↑ + G↓, the polarization P = (G↑ −
G↓)/(G↑ + G↓), the relative mixing conductance η =
2G↑↓/(G↑ + G↓) and the ratio of the ‘spin-flip conduc-
tance’ [5] Gsf = e2/(2δτsf) (δ is the energy level spac-
ing) to the conductance of the whole device in the parallel
configuration gsf = Gsf/(G/2)). The current is an even
function of θ. Note that α > 1. When the magnetiza-
tions are parallel (θ = 0), there is no spin-accumulation
on the normal metal node and the current is given by
Ohm’s law IP = I(θ = 0) = GV/2. The anti-parallel
magnetization configuration (θ = π) generates the largest
spin-accumulation, reducing the particle current to IAP =
I(θ = π) = G[1 − P 2/(1 + gsf)]V/2. In this case the
magneto-resistance ratio (IP − IAP)/IP is P 2/(1 + gsf),
irrespective of the relative mixing conductance η. Natu-
rally, the spin-accumulation and consequently the magne-
toresistance decreases with spin-flip relaxation time. Any
spin flip reduces the effective polarization. The result for
long spin-flip relaxation times (gsf � 1) was previously
obtained for two tunnel junctions [5] and we have thus
generalized it to arbitrary contacts. For general θ the cur-
rent depends on α and thus on the mixing conductance.
In Figure 5 we plot the current vs. the relative magnetiza-
tion angle θ for a given effective polarization P 2/(1 + gsf)
and a number of values of α (α = 1, α = 10 and α = 100).
In general, the current increases with increasing η. As one
can see from (5) a large relative mixing conductance means
that spins orthogonal to the magnetization in the reser-
voirs easily can escape from the normal metal node. This
suppresses the spin accumulation. Therefore when η � 1
and θ is not close to π the current approaches Ohm’s law
I = GV/2. Except for the anti-parallel magnetizations,
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-V/2F1 N
G G

I I

F2 V/2
1 2 q

Fig. 4. The two-terminal device comprising a normal metal
node attached to two ferromagnetic reservoirs (F1 and F2)
with arbitrary relative magnetization direction θ. A source-
drain bias V is applied between the ferromagnetic reservoirs
and a current I flows between the two reservoirs. The contact
between ferromagnetic F1 (F2) and the normal metal node is
characterized by the conductances G↑1, G↓1, and G↑↓1 (G↑2, G↓2,

and G↑↓2 ).

the angle dependence vanishes in that limit which explains
the sharp dip at θ close to π.

Figure 4 illustrates a universal property of the two-
terminal device with non-collinear magnetizations that is
independent of the contact conductances and the spin-flip
relaxation time. By scaling the total conductance modu-
lation to the difference between the conductance in the
parallel and anti-parallel configuration (G/2)P 2/(1 + gsf)
the current change for any two terminal device with a dif-
fusive normal metal node should be above the universal
curve determined by the minimum value of η, |η| = 1.
Thus, according to our theory the current vs. magneti-
zation angle relation for a spin valve must lie above the
universal curve obtained for |η| = 1.

The result (45) has been derived for normal metals is-
lands that can be described as Fermi liquids [20]. It was re-
cently generalized to transport through a Luttinger liquid
by Balents and Egger [21]. In a Luttinger liquid the current
is non-linear in the applied source-drain bias voltage, and
the spin-charge separation reduces the spin-accumulation
[21]. Coulomb charging effects can also reduce the spin-
accumulation in the linear response regime [5].

4.2 Three terminals

Let us now consider a set-up similar to the Johnson spin-
transistor as shown in Figure 6 which was also discussed
by Geux et al. [22] within the context of a multi-terminal
Landauer-Büttiker formalism for collinear magnetization
configurations only.

A small normal metal node is attached to two ferro-
magnetic reservoirs and one normal metal reservoir by
three contacts. A voltage bias applied to the ferromagnetic
reservoir F1 and the normal metal reservoir N causes a
current between the same reservoirs passing through the
normal metal node. The spin-accumulation on the nor-
mal metal node injected by F1 affects the chemical po-
tential of ferromagnet F2, which is adjusted such that the
charge current into F2 vanishes. We characterize the con-
tact between the first (second) ferromagnet and the nor-
mal metal node by the total conductance G1 = G↑1 + G↓1
(G2 = G↑2 + G↓2), the polarization P1 = (G↑1 − G↓1)/G1

(P2 = (G↑2−G
↓
2)/G2) and the relative mixing conductance

0.0 0.5 1.0

1

1-P2

I
(G

V
/2
)

q/p

Fig. 5. The current through the two-terminal device as a func-
tion of the relative angle θ between the magnetization direc-
tions in F1 and F2. The current is normalized by the current
in the parallel configuration IP = GV/2 and reaches the mini-
mum I = (1− P 2/(1 + gsf))GV/2 ≡ (1− P 2

eff)GV/2 when the
magnetizations are anti-parallel (θ = π). The lowest solid line
is for the minimum relative mixing conductance |η = 1|. This
line forms the lowest possible universal curve for the conduc-
tance vs. relative angle θ, since all other values of the mixing
conductance lies above this line.

-V/2F1 N

I I

N

F2

V/2

G G

G

1 3N

2

Fig. 6. The three terminal Johnson spin-transistor. A bias
voltage is applied between a ferromagnet and a normal metal
and a current flows between the same reservoirs through a
normal metal node. The potential on another ferromagnet is
measured when its magnetizations is parallel or anti-parallel to
the first ferromagnet. The contact between the first (second)
ferromagnet and the normal metal node is characterized by the
total conductance G1 (G2), and the polarization P1 (P2). The
conductance between the normal metal node and the normal
metal reservoir is G3N .

η2 = 2G↑↓2 /(G
↑
2 +G↓2) (η1 = 2G↑↓1 /(G

↑
1 +G↓1)). The contact

between the normal metal reservoir and the normal metal
node is characterized by a single conductance parameter,
G3N . θ is the relative angle between the magnetization of
ferromagnet F1 and ferromagnet F2. We assume that the
typical rate of spin-injection into the node is faster than
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the spin-flip relaxation rate, so that the right hand side of
(1) can be set to zero.

The current through the normal metal node is invari-
ant with respect to a flip in the magnetization direction
of ferromagnet F1 or F2: I(θ) = I(θ + π). However the
chemical potential of ferromagnet F2 changes during the
same process since it is sensitive to the magnitude and
direction of the spin-accumulation on the normal metal
node: µ2(θ) 6= µ2(θ + π). A spin-‘resistance’ Rs(θ) can be
defined as the ratio between the difference in the chemi-
cal potential of ferromagnetic F2 when ferromagnet F1 or
ferromagnet F2 is flipped: RS = (V2(θ+π)−V2(θ))/I(θ).
In the collinear configuration (θ = 0) the spin-resistance
Rs(θ = 0) is thus the ratio between the difference in the
chemical potential of ferromagnetic F2 when its magneti-
zation is parallel (µP

2 ) and anti-parallel (µAP
2 ) to the mag-

netization of ferromagnet F1 and a current (I) passes from
ferromagnet F1 to the normal metal reservoir N. With the
aid of the general conductances, valid for arbitrary con-
tacts, we solve for the non-equilibrium distribution func-
tion on the normal metal node (1) under the condition
that no particle current enters ferromagnet F2. Using the
solution for the non-equilibrium distribution function we
find the current (5) through the system and subsequently
the non-equilibrium chemical potential of ferromagnet F2.

Let us first discuss the results in the collinear config-
uration, θ = 0 and π. The spin-resistance can be simply
expressed as

RS(θ = 0) =
2P1P2

G1(1− P 2
1 ) +G3N +G2(1− P 2

2 )
, (47)

and is independent of the relative mixing conductances η1

and η2 that are only relevant for the transport proper-
ties in systems with non-collinear magnetization configu-
rations. The spin-resistance is proportional to the prod-
uct of the polarizations of the contacts to ferromagnet
F1 and ferromagnet F2. In order to measure a large ef-
fect of the spin-accumulation, e.g. a large spin-resistance,
highly resistive contacts should be used. On the other
hand, the resistance has to be small enough so that the
transport dwell time is shorter than the spin-flip relax-
ation. The simple result (47) covers a large class of ex-
periments, since we have not specified any details about
the contacts between the reservoirs and the normal metal
node. It is noted, though, that equation (47) is only valid
for a normal metal node that is smaller than the spin-
diffusion length and can therefore not be applied directly
to Johnson’s experiment [7].

We can understand that the present results are quite
different from those of reference [22] as follows. The gen-
eral formulation in terms of transmission probabilities of
Geux et al. is exact. However, in order to include the ef-
fects of spin-relaxation the transmission probabilities were
treated as pair-wise resistors between the reservoirs. This
corresponds to an equivalent circuit in which resistors con-
nect the three reservoirs in a “ring” topology. The present
model, on the other hand, can be described by a “star”
configuration circuit, in which all resistors point from the
reservoirs to a single node. The present model is more

accurate when the contacts dominate the transport prop-
erties, whereas Geux’s model is preferable when the resis-
tance of the normal metal island is important. Effectively,
Johnson’s thin film device appears to be closer to the star
configuration.

Let us now proceed to discuss the results when the
magnetization directions are non-collinear. The analytical
expression for the spin-resistance is much simpler when
the two contacts F1-N and F2-N are identical, G1 = G2 ≡
G, P1 = P2 ≡ P and η1 = η2 ≡ η. Furthermore we disre-
gard the imaginary part of the mixing conductance which
is very small or zero in the model calculations of tunnel,
ballistic and diffusive contacts presented in this paper as
well as in recent first-principle band-structure calculations
[23]. The spin-resistance then has the simple form

RS =
2(G3N+2Gη)P 2 cos(θ)

(G3N+G(1+η−P 2))2−G2 cos2(θ)(1−η−P 2)2
·

(48)

The spin-resistance is an even function of the relative an-
gle between the magnetization directions θ and we recover
the result (47) when θ = 0. The spin-resistance vanishes
when the magnetizations are perpendicular θ = π/2 as
expected from the symmetry of the systems. The angu-
lar dependence is approximately proportional to cos(θ)
when the relative mixing conductance is not too large,
η ≈ 1. For larger mixing conductances η � 1 the spin-
accumulation on the normal metal island is strongly sup-
pressed in the perpendicular configuration θ = π/2 due
to the large transport rates for spins between the nor-
mal metal node and ferromagnet F2. Consequently the
spin-resistance is small and only weakly dependent on the
relative angle around θ = π/2.

Another novel three-terminal device comprising of
three ferromagnetic reservoirs (the “spin-flip transistor”),
which utilizes the added functionality provided by non-
collinear magnetization directions, was introduced in
reference [15].

5 Conclusion

We developed a mesoscopic circuit theory of spin-
transport in multi-terminal hybrid ferromagnet-normal
metal systems starting from microscopic principles. Based
on conservation of spin-current on each node the circuit
theory is parameterized by the conductances of the con-
tacts, viz. two spin-dependent conductances and a (com-
plex) mixing conductance. The latter is a novel concept
relevant for transport in systems with non-collinear mag-
netization configurations. Explicit expressions for the con-
ductances for diffusive, ballistic and tunnel contacts have
been derived. The circuit theory leads to simple and quite
general results for the conductance of two-terminal and
three-terminal devices, like Johnson’s spin-transistor. For
two-terminal systems a universal lower limit for the cur-
rent modulation as a function of the relative magnetiza-
tion has been found.
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After completion of this work a complementary ap-
proach to spin-transport in ferromagnetic-normal metal
systems starting from the scattering matrices was pre-
sented in reference [24]. Using random matrices to de-
scribe the scattering within disordered normal metal
nodes equivalent results to our (2) were obtained.
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Appendix A: Transformation from
a non-collinear to a collinear configuration

We consider the transmission and reflection matrices be-
tween a normal metal and a ferromagnet. The Schrödinger
equation is

Ĥ(r)ψ(r) = Eψ(r),

where ψ(r) is a two-component spinor. The Hamiltonian
is

Ĥ(r) = Û

[
− 1

2m
∇21̂ + Vs(r)σz + V̂c(r)

]
Û . (49)

We consider transport between a normal metal and a
uniform ferromagnet, so that the magnetization direc-
tion m is a spatially independent unit vector. In (49)
Vs(r) denotes the spin-dependent potential and V̂c(r) is
the scattering potential of the contact. The direction of
the magnetization is represented by the angles θ and ϕ
as m = (sin θ cosϕ, sin θ sinϕ, cos θ). The Hermitian and
unitary matrix Û that diagonalizes the spin-dependent po-
tential is

Û =

(
cos(θ/2) sin(θ/2)e−iϕ

sin(θ/2)eiϕ − cos(θ/2)

)
.

The spin-dependent potential vanishes in the normal
metal, Vs(r) = 0 for x < xl and attains a constant value
in the ferromagnet Vs(r) = Vs for x > xr. The contact is
represented by the scattering potential

V̂c(r) =

(
V↑(r) Vsf(r)
V †sf(r) V↓(r)

)
(50)

and attains the bulk values within the normal metal and
the ferromagnet for x < xl and x > xr,respectively. The
off-diagonal terms in (50) represent the exchange poten-
tials due to a non-collinear magnetization in the contact,

spin-orbit interaction or spin-flip scatterers. The Hamilto-
nian (49) can be diagonalized in spin-space by

ψ(r) = Ûφ(r) . (51)

The Schrödinger equation for the spinor φ(r) is[
− 1

2m
∇21̂ + Vs(r)σz + V̂c(r)−E

]
φ(r) = 0 .

Let us now consider an incoming wave from the normal
metal in the transverse mode n and with spin s collinear to
the magnetization in the ferromagnet. The wave function
in the normal metal is

φns (r) =
∑
ms′

χmN (ρ)√
km
× [δs′sδmnξseiknx + rmnc,s′sξs′e

−ikmx],

(52)

where ξ†↑ = (1, 0) and ξ†↓ = (0, 1) are the spinors, χmN (ρ) is
the transverse wave function, km is the longitudinal wave
vector for mode m and rmnc,s′s is the reflection matrix from
state ns to statems′. We would like to transform the result
for the reflection matrix into a basis with arbitrary spin
quantization axis. To this end we introduce the incoming
spinor wave function

ψns (r) =
∑
ms′

χmN (ρ)√
km
×
[
δs′sδ

mnξseiknx + rmns′s ξs′e
−ikmx

]
.

(53)

Using the transformation (51) we can also write the wave
function spinor in terms of the basis states φ(r) as

ψns (r) = Û
∑
σ

φnσ(r)aσs, (54)

where aσs are expansion coefficients to be determined by
equating (53) and (54). We thus find that

aσs = ξ†σUξs = Uσs

and

rmns′s =
∑
σ′σ

Us′σ′r
mn
c,σ′σUσs. (55)

Disregarding spin-flip processes in the contact the trans-
formation of the reflection matrix can be written as

r̂nm = û↑r
mn
c,↑↑ + û↓r

mn
c,↓↓,

where the spin-projection matrices û↑ and û↓ are defined
in (3) and (4). Spin-flip processes can also be included by
using the general transformation (55), but the reflection
matrix r̂nm can then not be expressed in terms of the
spin-projection matrices only.

We can perform a similar calculation in order to find
the transformation of the transmission coefficients from
the ferromagnet into the normal metal. In the basis where
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the spin-quantization axis is collinear with the magneti-
zation the incoming wave from the ferromagnet is

φns (r) =
∑
ms′

χmFs(ρ)√
kms

×
[
δs′sδ

mnξseikns x + rmncF,s′sξs′e
−ikms x

]
, (56)

where χFsm (ρ) is the (spin-dependent) transverse wave
function and kms is the spin-dependent Fermi wave-vector.
The outgoing wave into the normal metal is

φns (r) =
∑
ms′

χmN (ρ)√
km

tm,ncF,s′sξs′ exp(ikms x).

By transforming the outgoing wave into an arbitrary mag-
netization direction according to (51), we see that the
transmission coefficient from a state with spin s collinear
to the magnetization direction in the ferromagnet to a
state with spin s′ collinear to the spin-quantization axis
along the z-direction is

t̂′nm = Û t̂nmcF .

In the absence of spin-flip scattering in the contact, we
have

t′nmss′ = Uss′t
nm
cF,s′ .

The current in the normal metal is (for a given energy
shell) (note that we associate the first index with Ψ and
the second index with Ψ†)

h

e
Î = Mf̂N −

∑
nm

[
r̂mnf̂N (r̂nm)† − t̂′mnf̂F

(
t̂′nm

)†]
.

(57)

The contribution from the transmission probability to the
spin-current is therefore

eIFαδ =
e2

h

∑
nmβ

t′mnαβ fFβ
(
t′nmβδ

)†
=
e2

h

∑
nmβ

Uαβf
F
β

∣∣t′mnβ

∣∣2 Uβδ.
Whereas the contribution from the transmission probabil-
ity becomes

eÎF = G↑û↑f
F
↑ +G↓û↓f

F
↓ ,

where the spin-dependent conductance is

Gs =
e2

h

∑
nm

|t′mns |2 .

Similarly, the contribution from the normal metal is

eÎ = Mf̂N −
∑
ss′

ûsf̂N ûs
′
rmns (rmns′ )

= −G↑û↑f̂N û↑ −G↓û↓f̂N û↓
−G↑↓û↑f̂N û↓ −G∗↑↓û↓f̂N û↑ ,

where we have used the unitarity of the scattering matrix
so that M −

∑
nm |rnms |

2 =
∑
nm |t′nms |2 and the mixing

conductance is introduced as

G↑↓ =
e2

h

[
M −

∑
nm

(
rmn↑

)∗
rnm↓

]
.
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